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Characterization of microstructural 
anisotropy in orthotropic materials using 
a second rank tensor 
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A second rank symmetric tensor which describes the degree of orientation in orthotropic 
materials is presented and shown to reflect accurately patterns of experimental data. The 
use of this tensor to describe microstructural anisotropy is compared to currently 
accepted methods and is found to be more useful and accurate in experimental studies. 
A method for determining the anisotropy tensor in a material is given, based on measure- 
ments on any three mutually perpendicular planes, and the fundamental restriction of 
this method to orthotropic materials is discussed. Experimentally determined anisotropy 
tensors in five specimens of cancellous bone from five different human bones are given. 

1. Introduction 
The degree of microstructural orientation in a 
material is a fundamental quantity of wide interest 
to those studying mechanical properties of both 
natural and man-made materials. Orientation level 
measurements in various materials including 
human cancellous bone, forged metal parts, multi- 
phase composites, foamed materials, and wood 
have been attempted. These measurements are 
valuable in-applications such as the design of 
materials with specific properties, monitoring of 
material manufacturing processes, and investi- 
gations of adaptive remodelling in mammalian 
bone tissue. 

A large subset of anisotropic materials, ortho- 
tropic materials exhibit symmetry about three 
mutually perpendicular planes. Materials such as 
wood, cold-rolled steel, and human bone are 
essentially orthotropic, and orthotropy includes 
the presence of planes of  isotropy or full isotropy 
as degenerate cases. 

Structure-material property relationships in 
natural and man-made materials are currently 
limited since a description of material anisotropy 
which can be easily incorporated into relationships 

is lacking. Thus, most investigations into proper- 
ties of  multiphase materials based on microstruc- 
ture (e.g., using the self-consistent method or the 
differential computation method - see Cleary 
et al. [1 ]) use as models for included particles the 
two special cases of thin plates and spheres. A 
method by which fully three-dimensional infor- 
mation on the relative orientation levels and the 
principal directions of material orientation can 
be put into tensorial form* is described herein. 

"Stereology", or the generalization of planar 
structure measurements to three dimensions, is a 
common technique in materials science, and the 
classical text by Underwood [2] reviews the sub- 
ject in detail. It is now well established, for 
example, that in any plane through a multiphase 
material, the fraction of area which cuts through 
a particular phase is equal to the fraction of vol- 
ume which that phase occupies. Other measure- 
ments of interest to materials scientists, such as 
the size distribution of particles of a given phase, 
are addressed by Underwood. Our main concern 
here is the degree of overall anisotropy in the 
material, and it is this topic which we will first 
review in detail. 

*We gratefully acknowledge the original suggestion of this approach by Professor Michael P. Cleary, Department of 
Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. 
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2. Current techniques for orientation level 
measurement 

Orientation level measurements in anisotropic 
materials typically utilize planar sections through 
a specimen of material which are polished and 
viewed microscopically. An array of parallel lines 
is superimposed on the sample and the number 
of intersections between these lines and micro- 
structurally important features (e.g., grain/phase 
boundaries) are counted for a great many orien- 
tations of the line array. Various automations of 
this procedure facilitate the process. Stereology 
concatenates these planar measurements to pro- 
vide three-dimensional information on the material 
orientation. An advance over current stereologic 
techniques for orientation level measurement is 
reported herein. 

2.1. Saltykov's method for partially 
oriented structures 

Saltykov [3], as a tool for studying grain shape in 
metals, developed a method for quantifying orien- 
tation in orthotropic materials which was based on 
measurements of the surface area of grain (or 
phase) boundaries per unit volume. By considering 
the boundary surface area density in a partially 
oriented microstructure as the sum of contri- 

(o) 

(b) 

butions from three basic types of "totally 
oriented" microstructures, Saltykov arrives at 
expressions for the degree of orientation in terms 
of the fraction of surface area in a sample which 
each contributes. Fig. 1 shows the totally oriented 
microstructures used by Saltykov. The isotropic 
system in Fig. la has a surface density, s, of 

s = 2p (1) 

where p is the number of intercepts per unit line 
length in any direction in the material. The com- 
pletely linearly oriented structure shown in Fig. lb 
has a surface density of 

s = ( ~ / 2 ) p ~  (5) 

where the subscript on p shows that the direction 
of measurement must be perpendicular to the 
direction of orientation. The completely planar 
system in Fig. 1 c has a surface density of 

s = Pll (3) 

where here the subscript indicated that the 
measurement o fp  must be parallel to the direction 
of planar orientation. 

As an example of the reasoning used in the cal- 
culation of an orientation level, consider the case 
of a linear-isotropic material as shown in Fig. 2a. 
Since the linear surfaces do not contribute to the 
intercepts per unit line length as measured parallel 
to the axis of orientation, it follows that 

(S)is = 2PlI. (4) 

In directions perpendicular to the axis of orien- 
tation, both the linear and the isotropic surfaces 
contribute to the intercepts per unit line length. 
Thus to arrive at the surface density of the linear 
fraction, one uses 

Isotropic Figure I Saltykov's totally oriented microstructures. 
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(S)rm = @ r l 2 ) ( P i - - P l l ) .  (5) 

Thus the total surface density is 

s = (Tr/Z)p• + [2 - -  (w/Z)]Pll (6) 

and the degree of  orientation can be given as 

o : (S)r~/s .  (7) 

Similar analyses for the other cases in Fig. 2 lead 
to the expressions in Table I. 

3 .2 .  Hi l l iard 's  m e t h o d  f o r  o r i e n t e d  
m icrost ructu  res 

The method proposed by Hilliard [4] is much 
more general than that of  Saltykov and also con- 
cerns itself with surface densities. The fundamen- 

Figure 2 Saltykov's partially oriented microstructttres. 

tal quantity of  concern in Hilliard's analysis is the 
distribution function S(~o, ~b) which is defined as 
the fraction of  surface area per unit volume which 
has a unit normal vector in the range ~0 + de and 

+ d~ (where ~ and ~ are the polar and planar 
angles in spherical coordinates) and the total 
surface area is given by simply integrating this 
function over a unit sphere. Some rather complex 
mathematical manipulation produces an expression 
for the surface density in terms of  intercept 
measurements. For measurements in the plane 
whose normal is r = 0, the expression becomes 

S(7r/2, if) = (1/lr) {[(P(co + Aco) --  2P(co) 

+ P(co -- AaJ))/(Aco2)l + P(co)} (8) 

where Aco is the increment of  angle between 
successive measurements and co = 7s + 1r/2. Note 
that this gives an estimate of  S@o, if) at ~o = (~r/2). 

3. The mean intercept length tensor 
In partially oriented microstructures, both Under- 
wood [2] and Whitehouse [ 5 - 8 ]  show that the 
mean intercept length, plotted as a radius at the 
angle of measurement, generates an ellipse in any 
plane. Generalization of  this fact to three dimen- 
sions shows that the mean intercept length, plotted 
as a radius at the angle of  measurement, generates 

T A B L E I Saltykov's equations for partially oriented systems 

System type Total specific sttrface area degree of orientation 

Linear s = (Tr/2)P b + [2 -- (Tr/2)]P a O = (Pb --Pa)/[Pb + (4/rr -- 1)Pa] 
Planar s = Pb + Pa O = (Pb--Pa)/(Pb + Pa) 
Planar-linear s = Pb + [2 -- &/2)]P a + [0r /2)-  1]P e Opl = (Pb --Pc)/s 

Oli n = 7r/2 (Pc--ea )Is 
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an ellipse in any plane. Generalization of this fact 
to three dimensions shows that the mean intercept 
length, plotted as a radius from the origin at the 
angle of measurement, generates the surface of an 
ellipsoid of general formula 

Ax~ + Bx~ + Cx~ + 2Dxx x2 + 2Exl  x3 

+ 2Fx2xa = 1. (9) 

The linchpin of the new representation of micro- 
structure described here involves recognizing this 
equation as the quadratic form of a second rank 
tensor. More specifically, if the mean intercept 
length L were plotted as a radius and related to 
Cartesian coordinates by 

Xl = Lnl 

x2 = Ln2 (10) 

xa = Ln3 

where nl, ha, and n3 are the projections of a unit 
vector, in the direction in which the measurement 
was made, in the xa, x2, and x3 directions, respec- 
tively, then Equation 1 gives 

L2(An~ + Bn~ + Cn~ + 2Dnln2 + 2Enln3 

+ 2Fn2n3) = 1, (11) 

which can be represented as 

i/I,  2 = n . [ M ] ' n  (12) 

where [M] is a material anisotropy tensor, whose 
components in terms of the formula for the 

[M]= 

ellipsoid are 

8 (13) 

F 

and n is a unit vector in the direction of the mean 
intercept length measurement. 

This representation of microstructure has many 
remarkable properties which make it especially 
attractive. For example, finding the directions of 
major material orientation consists simply of 
finding the principal axes and the ratios of prin- 
cipal values of this tensor. Also, this representation 
provides a material description which can be 
directly incorporated into prospective formulae 
for the elastic moduli of cancellous bone (or any 
analogous material) as a function of material 
orientation and density. Investigations of trabe- 
cular remodelling in response to physiologic stress 
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can also be facilitated using this material descrip- 
tion. 

As proof that a second rank tensor adequately 
represents the mean intercept length measure- 
ments, consider the variation of the mean inter- 
cept length with direction in a section. Here one. 
has 

n = cos 0e i + sin 0e i (14) 

where ei and ej are unit vectors in the axes defined 
by the specimen faces and 0 is defined in Fig. 3 
(obeying the right-hand rule for positive 0, of 
course). Equation 12 then becomes 

1/L 2 = cos20ma + sin20rn~ + 2sin 0 cos 0rn/~ 

(15) 

where m/j are the components of [M]. Using the 
standard Mohr circle transformation, we arrive at 

1/L 2 = (m u + rr~)/2 + [(mii -- m/i)/2 ] cos (20) 

or, if 

and 

then 

+ m u sin (20) (16) 

tan (~o) = 2mu/(m u -- rr~) (17) 

D 2 = [(m u -  rn~)/2] ~ + rn} (18) 

1/L 2 = (mii + m$)/2 + D cos (0 + ~0). (19) 

We would thus expect a sinusoidal variation of 
1/L ~ with angle. 

3.1, Experimental considerations 
Generating three-dimensional information from 
planar measurements made on three mutually 
perpendicular faces of a specimen requires con- 
sideration of the possible variations of micro- 
structure within the specimen volume. Either this 
effect or experimental measurement errors could 
account for the fact that the measured diagonal 
components of the anisotropy tensor do not "fit" 
together exactly. In particular 

v 

Figure 3 Relation of measurement angle to specimen axes 
[(i,/) = (1, 2), (2, 3), (3, 1)1. 



(m1~/m22)i,2(m22/m~s)2j(m33/m1~)3,a :/: 1 (20) 

where the subscripts I, 2 denote measurements 
made on the x~-x~ plane, 2, 3 denote measure- 
ments made on the x2-x3 plane, and so on. To 
resolve this problem, we apply small distortions 
to the coordinates in each plane to force the 
inequality into an equality. In particular, we use 

t t 

X~ = al x b  x2 = a2 x2 

x~ = a~x2, x;  = a~x~ 

t f 

X l = a s x  h x3=a6x 3 

in the 1, 2 plane, 

in the 2, 3 plane, and 

in the 1, 3 plane�9 

(21) 
Using these small distortions gives 

r ? P 2 t 
/TLll  ~ a T/711 ~ / ~ 2 2  ~ a2]T122~ /T~I2 : -  a l a 2 T n l 2  

in the l, 2 plane, 

' a~m22, ' 2 , m22 : m33 = a4m33, m23 = a3a4m23 

in the 2, 3 plane, and 

2 ' _ 2 
, = a  m l l ,  m 3 3 - - a 6 m 3 3 ,  m l 3 = a s a o m l 3  m t l  

in the 1, 3 plane�9 (22) 

To force Equation 20 into an equality, we take 

222 222 (al a3ag )/(a2a;~as ) = (m22/mH)l,2(m33/rn22)2,3 

x (ml~/rn~3)~,l. (23) 

To minimize individual distortions of faces, we 
take 

(am/a2) = (a~/a4) = (a6/as) 

= [(m22/rnn)~,2(m3~/rn~92,3(ma~/m3~)~,a] ~/6. 

(24) 

To eliminate errors in the measurement of the 
absolute values of mean intercept lengths, we 
further define the stretching factors such that 

a12(mll)1,2 = a~(m11)l,3 

aa2(m22)2,3 = a~(m22)l,2 (25) 

a2(m33)2,3 = a~(m3s)l,3. 

This procedure defines the fitted anisotropy tensor 
[M] only to within a multiplicative constant, but 
this is acceptable for our purposes, since the essen- 
tial information in this tensor is the orientation of 
the principal axes and the ratios between principal 
values, not the absolute values per se. This allows 
normalization of the anisotropy tensor so that it 
reflects the degree of orientation independently of 
the fineness of the microstructure. This normal- 
ization also avoids the complex experimental 
problem of calibrating the magnification applied 
to each section�9 Should the absolute values of the 
components of this tensor be deemed important, 
well-calibrated experimental instruments should 
render the ais so close to unity that they are 
unimportant. 

4 .  C o m p a r i s o n  w i t h  e x p e r i m e n t a l  resul ts  

Data obtained in a related experimental study [9], 
normalized to fit a unit amplitude cosine function, 
is shown in Fig. 4. The general pattern clearly fits 
a cosine with experimental noise�9 The poorer 
fitting points in Fig. 4 are traceable to the more 
isotropic specimens in which normalization 
(dividing by the experimentally fitted cosine 
magnitudes) accents the essentially constant 
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Figure 5 Plot of the standard 
error of estimate of the nor- 
malized fit of Fig. 3. 

experimental inaccuracies. Fig. 5 demonstrates 

this; the standard error of estimate of the normal- 

ized Mohr circle curve fit is larger in the more 

isotropic specimens. This experimental noise is not 

a serious problem, since it is large proportionately 

when anisotropy is small. Precise measurement of 
anisotropy is probably not important in these 

instances. Table II shows the components of the 

principal axes (in the coordinate system defined 

by the specimen faces, normalized to have a trace 

of unity) of the anisotropy tensor as measured in 
five cancellous bone specimens from five different 
human bones. 

5. Comparison with present stereologic 
measures 

If the mean intercept length as given in Equation 

11 were inverted to arrive at the intercepts per 

unit line length and were plotted as a function of 

angle, the familiar rose of intercepts as given by 

TAB LE I I Anisotropy tensors in cancellous bone samples from five human bones 

Bone Principal 
value directions 

Patel~ ~ 2  = 1.089) 
0.21099 0.08854 0.02489 0.55904 0.25543 -0.02734 0.96644 
0.08854 0.51091 0.07823 0.25430 0.92532 -0.28285 -0.25256 
0.02489 0.07823 0.27809 0.18664 0.28026 0.95878 0.04695 

Proximal ~mur ~ 2  = 0.964) 
0.45984 -0.00195 -0.03281 0.47021 0.95349 

-0.00195 0.17384 -0.00897 0.35641 0.00284 
-0.03281 -0.000897 0.36632 0.17338 -0.30141 

0.30117 
-0.05001 

0.95226 

0.01237 
0.99874 
0.04854 

Ischium ~ = 0.960) 
0.31420 0.00446 -0.11252 0.44875 -0.63136 0.24333 0.73612 
0.00446 0.33812 0.02835 0.33890 0.16875 0.96985 -0.17581 

-0.11252 0.02835 0.34767 0.21324 0.75690 -0.01325 0.65339 

-0.02537 
0.07225 
0.99706 

Acetabulurn~2 = 0.9911) 
0.37230 0.14054 -0.00818 0.49533 0.75293 
0.14054 0.33442 0.00061 0.29353 0.65749 

-0.00818 0.00061 0.29328 0.21113 -0.02849 

-0.65761 
0.74999 

-0.07108 

Tibia (alia 2 = 1.026) 
0.71898 0.08787 -0.14648 0.76797 0.96124 -0.23177 0.13960 
0.08787 0.13849 -0.03463 0.13165 0.14701 0.87031 0.47006 

-0.14648 -0.03463 0.14252 0.11038 -0.23326 -0.43131 0.87153 
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tO'gure 6 The rose of intercepts predicted by the mean 
intercept tensor representation. The contours shown are 
plotted for ellipses whose vertical components are unity 
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Underwood [2] is generated, as Fig. 6 shows. 
Given the mean intercept length tensor, this plot 
can be produced for any material plane and thus 
the degrees of  orientation as given by Saltykov can 
be produced. This idealization of the material 
microstructure obviously does not include the 
fine detail possible with Hilliard's analysis, and is 
directed towards a different goal. Rather than 
closely characterizing the shape of  included 
volumes in a material, we wish to characterize the 
overall material orientation. In specifying the 
anisotropy tensor as symmetric we have funda- 
mentally restricted this analysis to orthotropic 
materials, with three mutually perpendicular 
directions of  major orientation. This idealization 
is unavoidable considering the experimental 
method used to arrive at the tensor, which was a 
curve fit to the mean intercept data based on 
Equation 16. If  a method exists by which mu and 
mji (i 4=f) can be separated, we are not aware of it. 

The experimental accuracy of  this method for 
orthotropic materials should be higher than those 
o f  Saltykov and Hilliard since a great many inter- 
cept measurements are used to arrive at six quanti- 
ties in a second rank tensor. By basic statistical 
arguments, one can show that the accuracy of  

these six quantities is substantially higher than 
that o f  a single measurement of  mean intercept 
length. 

6. Conclusions 
The anisotropy of  microstructure in orthotropic 
materials is represented in terms of  a second rank 
tensor, which can be measured via planar methods 
applied to any three mutually perpendicular planes 
in the material. Simple explicit techniques are 
available to include these measurements in a 
relationship which employs microstructure 
measurements to predict structural parameters in 
orthotropic composites. Applications such as 
study of the relationships between mechanical 
stress applied to bone tissue (also a second rank 
tensor) and the degree of  tissue anisotropy is also 
easily accomplished using this representation of  
tissue microstructure. 
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